GS /NOI

BY

Er. Lalit Sharma

B.Tech (Electrical) Ex. Lecturer Govt. Engg. College Bathinda Physics Faculty Ranker's Point, Bathinda Arun Garg

M.Sc. Physics Gold Medalist Physics Faculty Ranker's Point, Bathinda

Class:10+1 Unit: II Topic: Kinematics

<u>SYLLABUS</u>: UNIT-II-B

 \bigcirc

Frame of reference. Motion in a straight line: Position-time graph, speed and velocity, Uniform and non-uniform motion, average speed and instantaneous velocity.

Uniformly accelerated motion, velocity-time, position-time graphs, relations for uniformly accelerated motion (graphical treatment).

Elementary concept of differentiation and integration for describing motion.

Scalar and vector quantities: Position and displacement vectors, general vectors and notation, equality of vectors, multiplication of vectors by a real number; addition and subtraction of vectors. Relative velocity.

Unit vector; Resolution of a vector in a plane – rectangular components, Motion in a plane, Cases of uniform velocity and uniform acceleration-projectile motion. Uniform circular motion.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of the publishers.

Q.No.	Topic/Question						
	Unit 2-B						
1.	 a) Define acceleration. What are its units & dimensions? b) Explain the following: Uniform acc. Average acc. Variable acc. Instantaneous acc. 	1					
2.	 Draw velocity time graph for a) Zero acceleration b) Non zero constant acceleration c) Increasing acceleration d) Decreasing acceleration e) -ve acceleration 	3					
3.	Prove equations of Uniform acc. Motion using calculus (Diff. integration) i) $v = u + at$ ii) $s = ut + \frac{1}{2}at^2$ iii) $v^2 - u^2 = 2.a.s$	5					
4.	Derive formula for distance covered by a particle in n^{th} second.	7					

Q.1. a) Define acceleration. What are its units & dimensions?b) Explain the following:

- I) Uniform acc.
- li) Average acc.
- lii) Variable acc.
- Iv) Instantaneous acc.

Ans.a) Acceleration:-

Acceleration is defined as time rate of change of velocity of object.

acc. $= \frac{change \ of \ velocity}{change \ in \ time}$

Units:- m/sec^2

Dimensions:
$$[acc] = \frac{L}{T^2} = [M^0 L^1 T^{-2}]$$

b)i) Uniform Acceleration:-

Acceleration when velocity changes by equal amount in equal interval of time.

Example:- free fall of object

acc.
$$=\frac{9.8m}{sec^2}=\frac{9.8m/sec}{1 sec}$$

ii) Variable Acceleration:-

Acceleration when velocity changes by unequal interval time.

Example:-

acc. is slope of velocity – time graph.

iii)Average Acceleration:-

Average acceleration is ratio

of change in velocity to change in time

change of velocity total change in time

iv) Instantaneous Acceleration:-

acc. = limit
$$\Delta t \rightarrow 0 \frac{\Delta V}{\Delta t}$$

= $\frac{dV}{dt}$

 $acc_{inst.}$ is slope of v - t graph.

time, t -

- Q.2. Draw velocity time graph for
 - a) Zero acceleration
 - b) Non zero constant acceleration
 - c) Increasing acceleration
 - d) Decreasing acceleration
 - e) -ve acceleration

Ans.a) Zero acceleration:-

$$\operatorname{acc} \rightarrow \frac{dV}{dt}$$

slope of
$$v - t$$
 graph

slope
$$=\frac{dV}{dt}=0$$

b) Non zero constant acceleration:-

slope
$$= \frac{dV}{dt}$$

 $= \frac{1m/sec}{sec}$

$$= 1m/sec^2$$

a) Increasing acceleration:-

acc = $\frac{dV}{dt}$, slope of velocity-time graph.

Slope of velocity-time graph is increasing

b) Decreasing acceleration:-

acc =
$$\frac{dV}{dt}$$

Slope of velocity-time graph is decreasing

c) <u>-ve acceleration</u>:-

acc =
$$\frac{dV}{dt}$$
 is -ve

It means velocity decreases with time. It means braking.

Q.3.	Prove equations of Uniform acc. Motion using calculus (Diff. integration)						
	U	í)		v = u + at			
		ii)		s = ut + $\frac{1}{2}at^2$			
		iii)		$v^2 - u^2 = 2.a.s$			
Ans.	<u>v = u ·</u>	-: + at acc	= a	(constant)			
		dV dt	= a				
		dv	= a.	dt			
		Integrating both sides					
		∫dv	= ∫ (a.dt			
			= a.	dt			
		$\int_u^v dv$	= a∫	$\int_0^t at$			
		$ v _{u}^{v}$	= a	$ t _0^t$			
		v - u	= a((t - 0)			
		<i>v</i> = <i>u</i> -	+ at				
	s = ut	$+\frac{1}{2}at^{2}:-$					
		ν	= u	+ at			
		ds dt	= u	+ at			
		∫ ds	= ∫ I	V dt +∫ at dt			
		Integra	ating I	both sides			
		$\int_0^s ds$	$=\int_0^t$	$\int_{0}^{t} v dt + a \int_{0}^{t} dt$			
		<i>s</i> ^S 0	= u	$ t _{0}^{t} + a \cdot \left \frac{t^{2}}{2}\right _{0}^{t}$			
		s – 0	= u	$(t-0) + \frac{1}{2}a(t^2 - 0^2)$			
		S	= ut	$\frac{1}{2}at^2$			
		S	= u.1	$t + \frac{1}{2}a.t^2$			

$v^2 - u^2 = 2.a.s$:-					
	асс	= a			
	dV dt	= a			
	$\frac{dV}{dt} \times \frac{ds}{ds}$	= a			
	$\frac{dv.v}{ds}$	= a			
	v.dv	= a <i>ds</i>			
Integrating both sides					
	∫v.dv	$=\int a.ds$			
ſ	$\int_{u}^{v} v. dv$	= $a \cdot \int_0^s ds$			
$\left \frac{v}{v}\right $	$\frac{v^2}{2} \frac{v}{u}$	= a(s – 0)			
$\frac{v^2}{2}$	$\frac{u^2}{2} - \frac{u^2}{2}$	= a s			
v	² - u ²	= 2.a.s			

- Q.4. Derive formula for distance covered by a particle in n^{th} second.
- Ans. This is for $(n + 1)^{th}$

Now for (n^{th}) second

Distance covered in n seconds, $S_n = u \cdot n + \frac{1}{2} a \cdot n^2$ Distance covered in (n-1) seconds, $S_{n-1} = u \cdot (n-1) + \frac{1}{2} a \cdot (n-1)^2$

$$\Delta s_n = s_n - s_{n-1}$$

$$= \left[u \cdot n + \frac{1}{2} a \cdot n^2 \right] - \left[u(n-1) + \frac{1}{2} a(n-1)^2 \right]$$

$$= \left[u / n + \frac{1}{2} a \cdot n^2 \right] - \left[u / n + u - \frac{1}{2} a(n^2 + 1 - 2n) \right]$$

$$= u - \frac{a}{2} + a \cdot n$$

 $\Delta s_{nth} = u + \frac{a}{2} (2.n - 1)$

Example:- Find distance covered by free fall particle in 5th second when dropped from rest?

Solution: $\Delta s_5 = s_5 - s_4$

$$= u + \frac{g}{2} (2 \cdot 5 - 1)$$
$$= 0 + \frac{10}{2} (9)$$
$$= 45$$